Quantm 8.3 Release Notes

Build 8.3.0.9

The Quantm 8.3 release includes these new features and enhancements:

- Use the new CO₂ Calculator to forecast carbon dioxide emissions that will be generated during the construction of alignments in your project. Enter expected CO₂ output values for moving materials, preparing land, and constructing structures along each alignment. In addition, you can forecast the CO₂ emissions that will be produced by traffic using the new alignment. The calculator is currently available for roads only. (details)
- You can now set a minimum radius lower than 35 meters for horizontal alignments! (<u>details</u>)

And fixes for these resolved issues:

• The default maximum height of retaining walls had to be 9999 meters. Now any height is allowed. (<u>details</u>)

To keep learning more about Quantm, visit the product page here!

If the link above doesn't cooperate, copy-and-paste <u>https://www.trimble.com/alignment</u> into your web browser.

• <u>QTM-14</u>: CO₂ Calculator

To calculate CO2 emissions for the construction and usage of a specific alignment in your project, follow these steps:

- 1. On the menu, select Data > Cost Parameters.
- 2. On these tabs, enter CO_2 values per meter²/mile² (as applicable):
 - Global tab emissions for moving haul, dump, borrow, and fill, materials.
 - Template Materials tab emissions for construction per material.
 - Bridge and Tunnels tabs emissions for constructing these specific structures.
 - Areas tab emissions for preparing site areas

Note: You would typically get average local CO2 emissions data from your regional transportation authority.

- 3. Right-click the alignment you want to report on and select CO₂ Report.
- 4. In the Traffic Composition section, enter percentages for the types of vehicle traffic (cars and trucks) that are expected to use the alignment.

)2 Report		
Alignment: Alig	gnment	
Traffic Composition		
Cars (Petrol)	50.000	%
Cars (Diesel)	20.000	%
Trucks	15.000	%
Cars (Other)	10.000	%
Cars (Emission Free)	5.000	%
Total	100.00	%
raffic Flow		
Average Speed	100	(km/hr)
Daily Traffic Flow	10000.000	
nvironmental Impact		
Fuel Consumption	6164.545	litres
CO2 Emissions	14.601	tonnes
Daily	Annual	
Recalculate	Recalcu	ilate All
Report	Vehicle Pa	arameters
ОК	Car	ncel

Note: The numbers shown are samples and do not reflect actual values.

- 5. In the Traffic Flow section, enter projections for the average speed and traffic volume. The total CO₂ emissions are reported in the Environmental Impact section; you can report as daily or annual. Weekdays and weekend days are treated the same.
- 6. If desired, you can also show these values in a Microsoft Excel spreadsheet by clicking the Report button.

⊟ 5 ° € · ·	direct export from co2 report.csv - Excel		E –	
File Home Insert Page Layout Formulas Da	ta Review View 🗘 Tell me what you want to do		Magnus Hedly	
	= = 😸 🍪 * 📑 Wrap Text General	▼ III → Z → A ≫ Delete → III →	V Y	
Poste - B I U	📄 📑 🖷 🛃 🛱 Merge & Center - 🛂 - % 🤊 📩	00 00 00 Formatting * Table * Styles * Film Format * 20 Film	rt & Find & ter * Select *	
Clipboard 5 Font 5	Alignment 5 Number	ra Styles Cells Ed	ting	
B21 → : × √ fx				
A B C	D E F G H I J K I	L M N O P Q R S	T	
1 Daily Traffic Flow: 10000				
2 Average Speed (km/hr): 100				
3				
4 Traffic Composition (%)				
5 Cars (Petrol) 50.0				
6 Cars (Diesel) 20.0				
/ Cars (Other) 10.0				
8 Trucks 15.0				
9 Cars (Emission Free) 5.0				
11				
12 Alignment Cost Length Fuel Consumption	(Daily) CO2 Emissions (Daily) Cut Borrow Fill Dump Template Materi	ials Mass Haul Wall Culvert Bridge Tunnel Area Li	near Total	
13 kr km Litre	s tonnes	and massinger wan convert bridge former wed th	incur Total	
14 CO2 02 3081838361 28525.250 326	92 775 21624181 0 14443093 6844676 8173633 2	24768686 176622 0 0 0 1291760 0 7732	2651	
15 CO2_01, 2166349204 30659.275 3515	67 833 26555805 0 18993068 7101110 9682878 3	1096163 482711 0 0 0 1590208 0 95501	942	

7. Select Alignment Summary and review the CO_2 emissions values and percentages (%) for each of the categories you filled, as well as the total. The Summary also reports on the future CO_2 emissions from traffic (from the values entered in the CO_2 Report dialog).

gnment na CO2_01	Length 30 659	2 170	kr	Color	CC	02 (Co	nstruct	tion)	CO	2 (Trafi	fic)	95 500
02_02	28 525	3 080	000 000									77 300
					-			_				
, anment Su			1					1			_	
grimene su	unnury											
Excel Wo	rksheet	1	-									
02 0	1											
02_0.												
	Ite	m (Quan	tity				kr	%			CO2
	Sour	ce										
	Cut (m	3)2	660	000		176	000	000	8	26 6	500	000
Tunr	nel Debr	is	8	000				0	0			0
Im	(m	3)		0				0	0			0
Bor	row (m	3)		0				0	0			0
De	estinatio) n		Ŭ				Ŭ	U			Ŭ
<u></u>	Fill (m	3)1	900	000		57	000	000	3	19 (000	000
Ex	port (m	3)		0				0	0			0
D	ump (m	3)	710	000		42	600	000	2	7 :	100	000
	Templa	te				202	000	000	14	E9 -	100	000
	Materia	ls				303	000	000	14	50.	100	000
Mass	Haul (n	13 6	220	000		31	100	000	1	31 :	100	000
Ret	Nall (m	2)	٥	654		48	300	000	2		183	000
CL	lvert (n	n)	9	0		40	500	000	0		105	000
В	ridae (n	n)	2	414	1	130	000	000	52			0
T	unnel (n	n)		160		73	600	000	3			0
Foot	orint Are	ea ,	140	000		200	000	000	14		-00	000
	<u>(m</u>	2) ¹	140	000		309	000	000	14	1.	590	000
L	inear (n	n)	30	659				0	0			0
- a	Cadastr	al		0				0	0			0
	ixed Co	st		_	2.4	70	000	0	0		00	0
Con	struction C	ost			2 1	.70	000	000	- 1	95 5	00	000
Tat	ne Cost				-			0			-	99
eometr	ic			-	2 :	170	000	000	-	95	500	0 0 9 9
Warning	SVC. H	S. ۱	/S. H	T. IS								

• <u>QTM-15</u>: Horizontal alignment radius - To set the minimum radius allowed for a horizontal alignment, select Data > Geometric Parameters on the menu. In the Curves group on the Horizontal tab, edit the value in the Radius (m) field.

Geometry type ≰ Standard geometry					
Horizontal Vertical Gra	de Terr	plate			
Radius (m)	Minimu 35	n:	Desired: 0		
Back to Back Curves	'n				
Superelevation Maximum (%)	7				
Transition					
Transition Type		Clothoid		~	
Length Convention		Linear		~	
Trans. Length at Min	Radius	45			
Straights Horizontal (m)	Minimu 50	n:			
	Desired 0		Maximun 0	n:	

• <u>QTM-21</u>: Retaining wall height - To change the maximum height of retaining walls, select Data > Cost Parameters on the menu. Then click the Wall tab and edit the Height for any wall.

lobal	Material	Geology Te	emplate Mate	rials Bridge	Tunnel	Wall	Culvert	Area	Linear	Fixe
Name Bofau	lt Wall	\$/m² 300.00	Slope (%) 100000.00	Height (m) 9999.00						